Cycles through a given arc and certain partite sets in strong multipartite tournaments

نویسندگان

  • Hongwei Li
  • Shengjia Li
  • Yubao Guo
  • Qiaoping Guo
چکیده

Moon [J. Combin. Inform. System Sci. 19 (1994), 207–214] showed that every strong tournament contains a Hamiltonian cycle through at least three pancyclic arcs. In this paper, we extend the result of Moon and prove that if D is a strong c-partite tournament with c ≥ 3, then D contains a cycle C containing vertices from exactly c partite sets such that C contains at least three arcs, each of which belongs to a cycle containing vertices from exactly l partite sets for each l ∈ {3, 4, . . . , c}. In addition, this bound is best possible. ∗ Corresponding author: [email protected] † Research is partially supported by NNSFC under no. 61174082. ‡ Research is supported by NNSFC under no. 11201273 282 H. LI, S. LI, Y. GUO AND Q. GUO

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On cycles through two arcs in strong multipartite tournaments

A multipartite tournament is an orientation of a complete c-partite graph. In [L. Volkmann, A remark on cycles through an arc in strongly connected multipartite tournaments, Appl. Math. Lett. 20 (2007) 1148–1150], Volkmann proved that a strongly connected cpartite tournament with c > 3 contains an arc that belongs to a directed cycle of length m for every m ∈ {3, 4, . . . , c}. He also conjectu...

متن کامل

On Cycles Containing a Given Arc in Regular Multipartite Tournaments

In this paper we prove that if T is a regular n-partite tournament with n ≥ 4, then each arc of T lies on a cycle whose vertices are from exactly k partite sets for k = 4, 5, . . . , n. Our result, in a sense, generalizes a theorem due to Alspach.

متن کامل

Cycles through a given arc in almost regular multipartite tournaments

If x is a vertex of a digraph D, then we denote by d(x) and d−(x) the outdegree and the indegree of x, respectively. The global irregularity of a digraph D is defined by ig(D) = max{d+(x), d−(x)}−min{d+(y), d−(y)} over all vertices x and y of D (including x = y). If ig(D) = 0, then D is regular and if ig(D) ≤ 1, then D is almost regular. A c-partite tournament is an orientation of a complete c-...

متن کامل

Cycles Containing a Given Arc in Regular Multipartite Tournaments

In this paper we prove that if T is a regular n-partite tournament with n≥6, then each arc of T lies on a k-cycle for k=4,5,···,n. Our result generalizes theorems due to Alspach and Guo respectively.

متن کامل

Multipartite tournaments with small number of cycles

L. Volkmann, Discrete Math. 245 (2002) 19-53 posed the following question. Let 4 ≤ m ≤ n. Are there strong n-partite tournaments, which are not themselves tournaments, with exactly n − m + 1 cycles of length m? We answer this question in affirmative. We raise the following problem. Given m ∈ {3, 4, . . . , n}, find a characterization of strong n-partite tournaments having exactly n −m + 1 cycle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2013